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Summary

Perturbation techniques based on Lie transforms as suggested by
Deprit were used as the theoretical foundation for programming the
analvtical solution of the Main Problem in Satellite Theory (all
gravitational harmonics being zero except J?). The collection of
formulas necessary and sufficient to construct an ephemeris is given
in the exposition. Short and long period displacements, as well as the
secular terms, have been obtained up to the third order in J2 as power
series of the eccentricity. They result from two successive completely
canonical transformations which it has been found convenient not to
compose into a unique transformation. Division by the eccentricity
appears nowhere in the developments=--neither explicitly nor implicitly.
The determination of the constants of motion from the initial conditions
has been given an elementary solution that is both complete and explicit
without being iterative. The program was developed by Rom from MAO's
package of subroutines for Mechanized Algebraic Operations. Reliability
tests have been run in two instances: in-track errors for ANNA 1B are

only 20 cm. after 210 days in orbit, while for RELAY II, they are 2.4 m,

even after 350 days in orbit.
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Introduction

By the present communication, we announce that the theory of an
artificial satellite can be produced explicitly in fully analytical
form by means of programs which enable computers to process literal
expressions. We justify this effort by displaying in two particular

instances the accuracy yielded by the series over very long arcs.

Theories of artificial satellites can be characterized by the basic
coordinates they use to map the phase spice. For no other reason than
our personal liking for Delaunay's elements, we have chosen to develop
the Main Problem as set up by Brouwer (1959). This selection does not
imply a judgment on the relative merits of Delaunay's variables versus
spheroidal coordinates (Vinti, Kislik, Aksenov), elliptic elements derived
from spheroidal coordinates (Iszak) or secularly processing elliptic ele-
ments (Sterne, Garfinkel, Aksnes)., But we submit that comparison of
analvtical theories will not lead to definitive conclusions less we have
the capabilities of generating each of them automatically by computer
so that we can transfer analvtically the constants of one theory into

those of anv other,

Our treatwent of the Main Problem is original on five points:

(1) We discarded the so-called Von Zeipel's method, which is an
algorithm devised by Poincaré (18Y3) to generate a canonical transformation
from a determining function in mixed variables (old coordinates and new

momenta). Instead, we use a formalism proposed elsewhere (Deprit 1969)




under the name of Lie transforms., The advantage is that we generate
explicitly the canonical transformations and their inverses without
inversions or substitutions, and that we avail ourselves of a systematic

procedure for transforming any state function into the new phase variables.

(11i) We gave up Brouwer's plan for a theory in a closed form.
Indeed, although we could reproduce by Lie transforms the first order
terms computed by Brouwer with Von Zeipel's method, we found that, at the
second order, the quadrature for W, prescribed by the Lie transforms

bears, among others, on terms of the type

(E-f)r_ssin 2g, (i—f)r-bsin(f+2g)
= il

(=f)r l+sin 2g, (2=f)r sin(i-2g)
% -

(4-f)r sin 2g, (i-f)r ’sin(f+2g)

(b-£) 1 sin(i-2g) .

We tried repeatedly to express in closed form the integrals of these
functions over the mean anomaly. Actually, Moses (1969) indicated that
such quadratures might not be expressible in closed form by means of the
usual elementary functions. Similar terms have been encountered by Aksnes
(1966) in his theory of an artificial satellite. In sum, the possibility
of implementing Brouwer's theory beyond the second order in a closed form
by means of rational, sine and cosine functions may now be regarded as an
open question that might likely be answered in the negative. For this

reason, we decided to expand the perturbing function in powers of the

eccentricity.




(iii) Delaunay's mapping from polar coordinates to elliptic

elements has the zero eccentricity as a singularity. It causes troubles in
the corrections to be computed for the mean anomaly and the argument of i
perigee. One way of circumventing them would be to coordinatize the phase

space by means of eccontric elements as defined by Poincaré or Hori, But

it would generate considerable, although not insuperable, coemplications

in the perturbation algorithm (see, for instance, Meffroy 1968). Instead,

. taking advantage of the systematic rule offered by Lie transforms for
transposing state functions, we decided, on one hand, to retain Delaunay's
elements as the phase coordinates, while, on the other hand, we base the
ephemeris of the satellite on functions of these phase coordinates that
are exempt from singularities for zero eccentricities, We have selected
the mean distance F = g + g to the node, the eccentric functions C = e cos g,
S = e sin g, and the usual Delaunay's elements, namely the longitude h
of the ascending node, the polar component H of the angular momentum,

and the action L = \ja.

(iv) We obtain the short and long period terms through the *hird

order in J_ , and the secular terms through the fourth order in Jye in

<

.i practice, so high an order may seem unrealistic, But, because the series
are purelv literal, th2y constitute a sort of arciive document: within the
accuracy of twelve significant figures, their coefficients have been
determined once and for all. In the majority of cases where the second
order is sufficient, the uvser can ignore in the series the contributions

of the third order. But for verv lonp arc predictions, it is, of course,

imperative to take into account the secular terms of order three and four.
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In sum, the higher the order of a literal theory, the more users it is likely

to serve. 5
Brouwer's theory consists essentially of two successive canonical i
transformations., We tried to compose them into a unique transformation as

Brouwer proposed it in his original paper. But the operations involved
so large a number of terms in the end products as well as in the inter- ‘
mediate results that we concluded it would be more economic to keep the

two mappings separate.

(v) The Main Problem of an artificial satellite is treated here
explicitly as a problem of initial conditions. The constants of the motion
are not left to be determined by successive iterations (Cain 1962) or by
least squares; the inverse canonical transformations are used to develop ]
explicitly the serles that express the average elements in terms of the

osculating elements.,

. The present communication is well restricted in its intentions. We
meant more than reproducing by machine the original paper of Brouwer and
its extension by Kozal. In fact we reworked its underlying formalism and
saw to it that it lended itself to a smooth automatic processing by
computers. At the same time, we eradicated the main sources of difficulties
that so far have adversely affected the use of several theories of artifi-
cial satellites, ramely, the premature truncatures in J2, the determination

° of the constants of the motion, and the singularity of the zero eccentricity.

Having estahlished that the Main Problem of Brouwer's theory can be solved

to the greater convenience of the users, we reckon that the completion of
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Brouwer's theory now is more a matter of developmental effort than a

research problem.

The basic steps of the paper are the classical ones. We expounded
on the introduction of Delaunay's variables with more details than are
necessiry for an expert (Section 2); but, in the classroom and in seminars,
we expe rienced that the standard references do not adequately meet with the
demands of astrodynami.s engineers in this matter. Sections 3- 5cover the
elimination of short period terms, i.e., the construction of a canonical
transformation to average over the mean anomaly, while Sections 6 and 7
outline the elimination of :the long period terms, i.e., the averaging
over the argument of perigee by constructing a second canonical transforma-
tion. We conclude the analytical study by indicating how the secular
equations and the ephemeris (in position and velocity) ought to be computed
so that the singularity of zero eccentricity can be radically eradicated

(Sections & and 9),.

Finally we present numerical evidence as to the reliability of the
present solution. As illustrations, we took the satellites ANNA 1B and
' ‘ RELAY II because their orbits have recently served to compare various

theories (Bonavito e¢? <l 1968). Positions and velocities computed from
the series are compared with the results of an accurate stepwise integra-
tion of the Main Problem. The errors exhibited are unusually small,
although they are accumulating over time intervals comparable with the
period of rotation of tlie perigee. Our purpose here is only to establish
that the anaiytical solution as we have it does not distor: zppreciably,
even over long arcs, the prcblem it purports to solve, which is solely

Brouwer's Main Problem of Satellite Theory,




1. The Main Problem

In the six-dimensional phase space product of the three-dimensional
Euclidean space of positions (x,y,z) by the three-dimensional Euclidean

space of velocities (X,Y,Z), consider the Hamiltonian function

R \2
31-% (X24Y2+72) ":' 1 - % Jz<_r£) (3 sin2g-1) (1) '

where

A

r = |x2+y2+z2

and B8 1is the latitude with respect to the coordinate plane Oxy,

thus unambiguously defined by the trigonometric relations
1
cos B = (x2+y2)*/r, sin 8 = z/r.

5 The system described by the Hamiltonian (1) constitutes the Main Problem
(MP) in the theory of a close satellite for an oblate planet. In that
context, u > 0 1is the constant of gravitation for the planet (dimension:
length3/time), Re >0 1is the mean radius of the planet, whereas

J, #0 1is a (dimensionless) constant of oblateness.

This is a reversible system with three degrees of freedom. Its

Hamjiltonian being conservative, it admits as a first integral

Jf = constant. (2)

Moreover the same Hamiltonian being invariant with respect to the commu-

tative group of rotations around the position axis €z, the MP possesses




as a second integral the function
H = xY - yX, (3)

which is the component along 0Oz of the angular momentum per unit of
mass with respect to O for the particle in motion relative to the

coordinate system Oxyz.

The integral (3) is used to render ignorable one coordinate in the

Hamiltonian (1). Consider the functien
S = S(xN,yN,h,X,Y,Z)
- -xN(X cos h+Y sin h) - yN[(-X sin h+Y cos h)2 + 22]%.
For the sake of brevity introduce the auxiliary function
I = IT(h,X,Y.2)
unambiguously defined by the consistent trigonometric relations

1
cos I = (=X sin h+Y cos h)/[(-X sin h+Y cos h)? + 22]5,

) 5=
sin I = Z/[(-X sin h+Y cos h)2 + 2z2]3,
The equations

-3S/3X = x, cos h -y sin h cos I,

>
]

N N
y = =58/5Y = Xy sin h + Yy cos h cos I,
z = =38/52 = yy sin 1,
XN = —‘q/ixN = X cos h + Y sin h,
B ) 11
YN = -‘35/”}'\v = [(-X sin h+Y cos h)< + Z2]°,

-
=
[}

-38/5h = xY - yX



define implicitly a completely canonical transformation from the state
variables (x,y,z,X,Y,Z) to the state variables (xN,yN,h,XN,YN,H).
The first three equations determine a coordinate transformation from the

" '\

position frame Oxyz to any frame OxNyNN whose plane OxNyN contains
the position vector. This transformation composes a rotation about the
axis Oz with an amplitude h that carries the axis O0Ox onto the axis
OxV, and a rotation about the axis OxN with the amplitude I that
carries the plane Oxy onto the plane OxVyN. Accordingly the angle h
is called the longitude of the ascending node OxN, and the angle I

the Znclination of the plane O over the plane Oxy.
NN

The last three equations of the transformation are inverted to obtain

that

X = XV cos h =Y, sin h cos I,

N

<
"

XV sin h+Y_ cos h cos I,

N

N
"

YN sin I.

These formulas mean that the plane OxNyN has been selected to contain
permanently the velocity vector, and that (XN,YN) are the components
of the velocity vector in that plane. For this reason the coordinate
plane OxNyN is called the instantaneous orbital plane; we shall denote

by T(t).

The following identities are trivial consequences of the transformation

equations:



2 ='x2 2 4 2 = 2 4 y2
¥ =22 4 y2 + 22 = 22 + ¥2,

X2 4+ Y2 4+ 27 = x% + Y2,

<
N
[}

X X=xX+ yY + zZ = x‘qxN + yNYV'

The angular momemtum G = x ~» X per unit of mass is oriented along

the coordinate axis ON normal to [I(t), its component along that axis

being
G = x3ty = Y%y
consequent ly
yZ = 2Y = G sin I sin h,
2X - xZ = -G sin I cos h,
H=xY-yvX= C cos I.

Also in the new variables the formulas defining the latitude become
"~ - 1~
cos £ = (x3+y§)'/r, sin B = (yv/r)sin I.

As a result of the rotation from the fixed frame Oxyz to the moving

frame OxVyNN, the Hamiltonian of the MP turns out to be

I - 3‘(\\: 9yN =X "YN »H)

R\2/ vy2
2av2y o Bly 1 _e N 212
(xN+YN) L =3 J?_(r) <3 = sin 1 1) . (4)

In the list of arguments for JH, where the coordinate h was expected,

N | =

we place a dash to emphasize that it has become an ignorable coordinate.

For a satellite whose planetocentric distance r is of the order
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of Re’ the part of (4) which contains J. 1is of the order of Jye

Henceforth assuming that J is a small number, we decompose (4) into

sl

the sum
=3 + JIH (5))
with
: : N oy = Lew2ay2y - B
ng y2
- - X ,Y.,H) = L _sls -ﬁ sin?l-1 (5,)
gfl S{I(XN,YN, 'XNt N ? 2 —T‘T re o 3

In this way, the MP is interpreted as basically a problem of two bodies

described by (5)), but perturbed by forces whose potential is stﬂ.

Along this line of approach our interest lies in simplifying as much
as possible the principal component Svo. A first step in that direction
consists in introducing the polar components in the instantaneous orbital

plane I(t). Thus consider the function
S S(r,ﬂ,xN,YN) = -r(XNcos P+YNsin ")

and the completely canonical transformation from the state variables

(XN’yN’XN’YV) to the state variables (r,0,R,") implicitly defined by

the equations

Xy = -WS/oXN = r cos .,
Yy = ~'S/J\N = r sin ',
R==38/3r = thos 6+ YN51n by
= =38/ = r(-stin w+YVcos ).
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We easily check that

0= ¥y = ¥y
2 4 y2 = R2 + 35 02
Nt =

so that the Hamiltonian (5) transforms into

3t :m(ri/ ’-’Rv:"H) =9[0 + ngll (61)
with
= - . 0O - - _l. 2 1 2 — .‘i
3[0 “3[0(1'9 »=sR,0,-) 2 (R +;'2’ ()) r°’ (62)
1 ¥l 3, 3 ., 1 |
i, = ml(r,e,-,-,w,ﬂ) =§?K§ - 5 cos I) -3 sin“Il cos 26J. (63)

We aim at simplifying further the principal part (6,) by rendering
ignorable all state variables but one action. This ultimate reduction
of the problem of two bodies is accomplished by Delaunay's mapping.

Consider the function
P = P(r,L,G3u) = [-(u?/L?) + 2(u/r) - (G2/r2)]%.
For fixed L and G such that
L G >0, (7
P taken as a function of r has two distinct roots, namely

[L - (L3-G?)51L/u,

p E rP(L,C;u)

r, = r,(L,G50) = [L+ (12-62) 1L/,

A

such that r, > r

A p 0, moreover, P 1is real under the condition that

r, Srr in which case it takes the form

- AD
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P = (u/Lr)[(rA—r)(r-rL)lli.

Under the assumption (7), consider the function
r

S : 8(r,0,L,Ciu) = GO + J[ P(F,L,G3u)dT

I'p

and the completely canonical transformation from the state variables

(r,,R,C) to the state variables (%,g,L,G) implicitly defined by the

equations
R = 38/dr = P(r,L,G;u),
( = 38/36 = G,
r - -
g = 3S/3L = (u?/LY) [ dr/P(r,L,G;u),
p
r - - -
g =0S/0C =6 -G / dr/r¢P(r,L,G:u).
fP

It can be expressed in a closed form. Indeed define the functions

a - a(L,u) and e - e(L,G) by the conditions
a> 0, L? = ua,

1
1>e >0, G = L(l-e”)?,

In terms of a and e, the roots of P(r) = 0 become

rp = 3(1'8), rA = a(1+e).

Now uniformize the quadrature for £ by substituting for the variable

r an angle u such that

r = a(l-e cos u):

L SPIEY S et a0 s aren el g T T AT T
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compute that

dr = ae sin u du
r,-r= 2ae cos?(u/2),

r - r, = 2ae sin?(u/2),

P
and check that the equation in 2 becomes

L =u=-esin u.

The quadrature defining g is uniformized by substituting for the

variable r an angle f such that

1/r = (14e cos f)/p,

where p p(6G;.) 1s defined by the conditions

p > 0, G- = yp.

Calculate that

dr = (e/p)r’sin f « df,
r,-r= [2e/(1-e) ]r cos2(f/2),
Fl- i, [2e/(1+e) ]r sin2(f/2),

and so cneck that

From the resulting identities

R = (Le/r)sin u = (nLe/G)sin f,




we easily derive that

RZ + (0%/r%) = (2u/r) - (u7/L2),

In sum, Delaunay's mapping transforms the Hamiltonian (6) into the

sum

H -ﬂ(i.g,‘,L,G,H) 83{0 + JZ?{I’ (71)
3[0 :gfo(_""-vL,-") = -U2/2L2’ (7?)
uR2

_ 1 l 3 3 9 y
3{1 :ml(g’g'..’[_’(;’ﬂ) =3 -—rg[(i -3 coszl) -3 sin-I sm(2f+2g)] (73)

e The Case of Small Eccentricities

We propose to expand the perturbation SHI as given by (73) in power
series of the eccentricity, thus limiting the application of the theory to

close satellites with small eccentricities.

The development of 1/r3, cos 2f/r3 and sin 2f/r} is implemented
automatically by computer (Deprit and Rom 1967). The following remarks are
in order. As power series of e with coefficients being trigonometric
sums in the multiples of &, the functions 1/r3, e2cos 2f/r3 and
e2sin 2f/r? present the d'Alembert characteristic (Brouwer and Clemence

1961), Therefore, if we introduce the mean distance
Fi= % + ¢

to the ascending node, we can observe that the power series

.

sin(2f+2g) _ \‘eJ
-0

.

A,  sin(ki+2F)

Jok

r? ]
J

~1 7
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whose trigonometric airguments are not § and g but & and F presents

also the d'Alembert characteristic, i.e., the summation index k satisfies

both conditions:
k| £ §, k = j (mod, 2).
We complete the expansion of 3, by observing that
2 "‘j
cos I = H/G = (H/L)(l-e=) <,

thus making use of the binomial series to develop cos I 1in powers of
e. Eventually trivial manipulations of power series in e will

bring 3!1 in the form

3{1 = LIQR;‘L-() \/ ejl}’f +3{] j G(H/L).}

330 1,3,0
where, for any j 2 0, the coefficients 39f and 9¢ are
I’j’O 1)j,2

finite sums of cosine functions with arguments of the type pi + 2kF,

the multiples k and p satisfving the conditions
k=0orl, ol 2 4, p = § (mod. 2).

To illustrate the development, we have edited in Table I the results '

up to degree 5 in e obtained bv computer. We have omitted the factor

o
8]

LURILTY = n‘a (R /a)- = n“R-,
e e '

The various trigonometric arguments are entered in Column 1; the cosines
are multiplied already by the smallest power of e compatible with the
d'Alembert characteristic. Then the second column lists the principal
parts of the coefficients, the next column the parts of degree e, and

SO0 on.
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Table I. Expansion of the Perturbation Potential Jf,

e el
Ind. term % - % o % - .léé n? % _ 13(;5 02
cos 2F _.[3:4.%”2 l8§._28.n2 _(3,_2_%62_5n2
e cos ¢ % _,% na %% _ %%g,nr
e cos(f+2F) = %% + %% ne %%? - %%% n2
e cos(2=2F) %._ % i - g% - %% 2
elcos 22 %._ %% n2 % - 6n2
e2cos(2242F) - é%-+ %% n? l%é_ 8n?
e”cos (21-2F) MISSING
e3cos 3¢ 3% + %ﬁ;_nz
e 3cos (32+42F) - %ﬁg +-%%§ ne
e3cos (34-2F) —-g; + é%'nz
. e“cos 41 %% = %ﬁ% ne
e“cos (4i+2F) - 12—22+1_2.9.9. i
e"cos (42-2F) RS
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As we shall see later, the theory of satellites depends vitally
on the fact that the expansion of ¥, does not contain the argument

2g = 2F - 28, This is proved to be the case by computing that

2n 2
- L -l 4217 3073(1-9 B
(o> =7, ] =g (1-3 &).

The d'Alembert character we just emphasized will also prove quite
useful. Indeed the perturbation algorithm we are going to use will consist
exclusively of Poisson brackets, formal quadratures and averagings
involving series that will all derive from S[l. But the algebra of
series having the d'Alembert characteristic is closed for these
operations. Thus by checking that the initial input 3!1 has this
character, we make certain that the for: alism will produce only functions
having the same character. In particular, we do not have to make provision

for negative powers of the eccentricity.

31 Elimination of the Short Period Terms

We propose to build a completely canonical transformation from the
osculating Delaunay's state coordinates (&,g,h,L,G,H) to new coordinates
',g',h',L',G',H') such that, in the transformed Hamiltonian, the
variablé L' becomes ignorable., We want the transformation in power
~erles of Jg. To this effect we shall use the perturbation technique

based on Lie transforms (Deprit 1969).

As we propose to truncate the development after Jf. we need only

to fill in the triangle
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0 1 2 3
3‘3 3‘2 3‘1 3‘0
H, %K K ;] H

The last line is to be computed in anticipation of the long period

elimination that we shall execute later on,

We eater the triangle by putting

3[8 '3‘0("’.-'1":'9') ’

3[(1) -3[1(9" og' ’—)L'iG"H') ’

v
N
.

3[2-0 for n :

Let us indicate by

.0y = 20, 3L _ 3¢, 3y (3%, By _ _ 3¢, 3By
(@HD) (31' L 3L 32') + (38' Yl Yk agv) +

+(ag LAy _ 3¢ . 9y )

oh' 3H' JH'! sh'

the Poisson bracket of the functions ¢ and ¢ in the phase space
(2',g',h",L',G",""). The calculations of the Poisson brackets require

in the present case some attention. We have to deal with functions whose

list of arguments are formally
L',e',H',Q',g'.

Thus, on one hand, because the variable h' 1is ignorable in both : and

y» the calculation of (y;y) will reduce to the first two Jacobians. On




r. T

the other hand, L' appears in two places, among the explicit variables,
but also implicitly in e', whereas G' appears not among the explicit
arguments but only implicitly in e'. Therefore by differentiation in

chain we have that

3% .99, 3e' (1-e'2)!5 g
°G'  3e' " 3¢’ ~ " L'e' ° (8,)
% _ . AQ_.) ad_ ., de' = (3¢ 1 -e'?

oL (SL' e' i+ e’ 5L (BL')e' + Lve" . (82)

The square root appearing in 23¢/3G' will of course be replaced by its
binomial expansion in powers of e'., Assume that the functions ¢

and | have the d'Alembert characteristic we already mentioned; then

the above formulas indicate that their partial derivatives with respect

to L' and G' lose this characteristic, and worse yet, contain terms

in e'"}, Nevertheless, the Poisson bracket (¢;y) retains the d'Alembert

characteristic (Brown and Shook 1933). For in the course of calculating

the Jacobians

24 2 _ 26, 3y
32" oL' ~ oL’ | pp¢ and

3,2y _ 39,
3G'

v
agl BG' [

5
g

the terme in e'.1 cancel one another. If the programming techniques

for manipulating literal expressions by computers enable one to process
polynomial variables with negative exponents--such is the case for MAO
(Rom 1969)--it is relatively easy to write subroutines that will implement
the partial differentiations 3/3G', 3/30L' as written in (81) and (82).

Then the natural cancellation in the Poisson bracket (s;y) of the terms

in e' may serve as a check on the validity of the coding while in




the initial phase of debugging the program, and as a test of the absolute
accuracy on the coefficients obtained as soon as the program becomes

operational.
Notice that for any function ¢(&',g',h',L',G',H'),
0 2 '-3 ~ Apt
60:6) = -u2L'T (3e/28 ).

After these preliminaries, we outline the operations that accomplished

the elimination of the short period terms.
Order 1. The basic identity being
30+ O V) =5,
we selected
Hy =<HDy e
Then putting
P =3 -,
we obtained the generator W, by the quadrature
W, = u'zL'?fﬁ'?ldz'.

Averaging and quadrature are two operations simple to program in MAO's

language. The average of a function ¢ periodic in *' is obtained

by transferring from the Poisson series ¢ into the Poisson series

{¢ > the terms whose trigonometric argument does not contain *'.  Then

the terms left in ¢ constitute the properly periodic part of ©; let

Y e
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us call it P, As P contains no constant term, the quadrature
E'
W/ Par

is a Poisson series having the same type as P. A term like cos(pl'+a)
of P is transferred into W as the term (1/p)sin(pi'+a); similarly
a term like sin(pfi'+a) of P 1is transferred into W as the term

(-1/p)cos(pi'+a). Table II lists the development of W wup to ed.

The final result is a first order generator of the form

wl - Wl(i',g'.-»L'sG',“';Re.u)

= w2r2L 73N et w +W (H'/L")?]
jZO 1,350 1’.1:7
where, for any j 2 0, the coefficients W and W are finite
1,3,0 1,32

sums of sine functions in the arguments pi' + 2kF' with k=0 or 1
and the d'Alembert characteristics |p| £ j, p = j (mod. 2). As for
the first order component :ﬂé in the averaged Hamiltonian, we obtain
3{(1) '.'%(-,-,—,L',C',H';Re,u)
Lbp21 176 N 02 eyl v 1y2
= R<L H

u“R2 jgoe G SN DE

where, for any j 2 0, the coefficients 3% o and 3% are
’ 9

vJs2

purely numerical.

Incidentally, until we reached the end products of the transformation,
we decided to keep explicitly among the polvnomial symbols of our Poisson
series the quantities ; and Re, thus not availing ourselves of a
natural system of units like the Vanguard units to render dimensionless

Delaunay's action momenta. Indeed it proved useful to constantly monitor

ulnis
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Table II. The first order generator W,
(The expansion must be multiplied by u?R';I.'-q)
e'? e't

sin 2F' ‘%*%H'Q i_g_%”,z _1_23%__1_;%n
e'sin &' 3_92 0 27 _ 153 .o 261 _ 2007

4 b 32 32 256 256
e'sin(2'+2F") -%+%n'2 I_Z%_g%n.z '%'5’%”
e'sin(2'~2F") - %+ % o2 Z:i?* (2)_11‘ 2 _ '16'1'2'Z+ gg
e'“sin 24" _1%-%67-”'2 .116._ Bkl
e'“sin(20'+2F") | - % + % n'? _1_%% _ a3
e'’sin(22'-2F") MISSING
e'’sin 3¢ _g%-%n'z ;_1%_ 1%‘1'?1- 2
e'3sin (3L'+2F") | - l;z?z;J,Lg% 12 %(5_)2_2 ] fg?}. 02
e'sin(3L'-2F") -6-15-.617,1'2 "1'()%'5+F%';'ZT"'2
e'"sin 448" TZ.;._%”Q
e'“sin(48'+2F") | - %3%4.%3_ nt2
e'“sin(42'-2F") | - EIZ 6_1[: "
e' sin 52" %Z—%-%g-él%n'l’
e''sin(si'42Ft) | - ey J;‘i-z-é 0t
e'osin(5:'=2F") | = sk 4 ois n'?
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the validity of our codings as well as the operational condition of the
equipment by inspecting the physical dimensions of the state variables
as they were being generated. For instance, in the present problem, all
elements svg of the basic Lie triangle have the dimensions of an energy
per unit of mass (i.e., length?/time2) whereas the generators "j have

those of an action per unit of mass (i.e., length2/time).

Order 2. Until the moment comes to compute it, the second order
generator w2 is assumed to be the null Poisson series. Under this

assumption we calculate in the Lie triangle the provisional elements
St} =3 + OfW) + 600, = 60w,
%2 = 3l 1.
3!0 Sfl'f cug.wl).
Thus we arrive at the second order differential identity
.i? + eug.w ) =g
0 o) =9t
We select for JIS the terms of 5?3 independent from %', we put
?2 = ?2(2"8')'91-"(;':“') '5‘(2) '3‘(2)
and we obtain the second order generator through the quadrature

Q'

- 2713 '
w2 v L ngl .

It turns out to be a series of the form

W, = W,(2",g",=,L" ,G' H' SR ,u)

= U™ vJ ' /1.1y2 ' b4
KYRIL jgoe [wz,j,o”"z,j,z(" /L") +w2’j.“(ﬂ /LYY%]



Table III.

e Rl SRR TR Ny frmeem & 1 o fo e

The second order generator W,

-7
(The expansion must be multiplied by ul’R;'L' )

e'?
sin 2F' T% + %.n'2 - f% nth - %%% % Z%% ¥3 _ g%%% [
sin 4F' E% - é% i 2s é% ol _ %_+ %% Y g% Y
e'sin ¢' Igg.+ é% el %%% rh
e'sin(i'+2F") g% = %% n'? + l%% nth
e'sin(2'-2F") BI85 2 2 .
e'sin(t'+4F'") %% = l;g n'? + %% ot
e'sin(2'-4F") T%g - g% n'2 4+ I%§ '
e'“sin 22" %%% = Ii% n'?2 lggé "
e'“sin(22'+2F") i‘zﬁ - QZ,I' 2, 13; "
e'2sin(28'-2F") MISSING
e'2sin(22"+4F") ~%§% - %g% 2
e'2sin(22'-4F") %*3}2”'2 _1_3_8_ gt
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>
where, for any j 2 0, the coefficients wszao' wszoZ and Wz’j'q

are finite sums of sine functions in the arguments p&' + 2kF' with

j (mod. 2).

k = 0, 1 or 2 and the d'Alembert characteristic |p| £3, P

The second order part 3[5 in the averaged Hamiltonian is of the type
ng 'ng(-.g',-,L',G'.H';Re.u)
=R LTI Setdpe | @R ('/L)2E8 | (H'/L)Y]
e i%0 05350 0,]J,2 0,3,4

where, for any j 2 0, the coefficients 3{’3 j 0,3{% j,2 and 3{% j,u
’J) ] ’ $J?

are sums of cosine functions in the argument 2kg' with k = 0 or 1.

Order 3. The element 52 in the triangle can now be completed; thus

we compute
] ey o P
¥, = I 2°

We begin the calculations at order 3 by putting w3 = 0, and we compute

under this assumption the elements in the fourth row of the triangle:

<3
PO —

=3 + OGN + 200;W,) + 66):W) = 261139, ,
=3+ G + Gt v.)
=38 + G£;V)

0 @
Ow PN

Then we treat the differential identity
3 = a3
I, + Btg’wa) Iy

as we have already done twice before, 3{3 takes from 5{8 the terms

independent from '; then, if
-
P, Hy ~3H,»
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Table IV, The third order generator Wj
(The expansion has to be multiplied by u®ROL'™'!

sin 4F' BT 1905 02 183 L LT
sin 6F' = I%%Z > Tg%z e Tg%z "oy 15;4 16
e'sin(L'+2F") 524 1029 00 STOTT oy LD
e'sin(2'-2F") l%g% - §%%g nt2 + 1;;23 atho- 2%%% e
D
e'sin(R'+6F") - 1%%-+ 5?; U S?; Nt 5§Z !
e'sin(L'-6F") - 3%% + 3%% nt? - E%% "oy 5?; Y




-27-

the third order generator w3 is derived from the quadrature

Q,'

- -2 '3 ]
w3 U L ?sdl .

The result is a series

=
"

W3(2' »8'»=,L',G",H' ;U:Re)
= HGRgL'-l ljgoe'j [w3)j 90+w3aj ’Z(H'/L')2+W3 ] 9"(H'/L')u

5,6 @LDE],

the coefficients being finite sums of sine

1% W W W
3,Js0° 39,2’ 3534’ 33 s6
functions in the arguments pf' + 2kF' such that 0 <k <6, |p| = j

and p = j (mod. 2).

Order 4, As we shall see later on, in order to find the third order
contributions to the long period and secular terms, we need to know the
fourth order component in the Hamiltonian averaged over the mean anomaly
2. Consequently we have computed partially the elements in the fifth

row of the triangle, namely

5

3 =)+ 660 + 366;3W,) +36£):W,) + 66 ;W,)

- 39‘0 ;w3) ’

F2 =9 + OL:W) +206:W,) + O,

&

%3 = . 2. .
H3 =96 + OF;W) + OfF5W,);

then, arriving at the differential identity
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Recapitulation of the Hamiltonian :averaged

Table V.
over the short period angle and of the
generators of the averaging transformation.

9t " 3‘; v, | ot LR I W, | 9t
e'l 4 2 2 6 3 12 4 20 5
e'l 6 6 0 15 0 28 0 45 0
e'? 8 6 2 18 6 36 8 60 10
e'l 12 12 0 29 0 56 0 90 U
e'! 14 12 2 30 b 60 12 100 15
e'> 18 18 0 45 0 84 0 135 0
e't 20 18 2 45 b 84 12 140 20
e'’ 24 24 0 60 0 112 0 180 0
e'8 26 24 2 60 6 112 12 180 20
e'? 30 30 0 75 0 140 0 2256 0
e'l0 32 30 2 75 O 140 12 225 20
e'!l 36 36 0 90 0 168 0
e'l? 38 36 2 90 6 168 12
e'!3 42 42 0 105 0
e'lH 44 42 2 105 6
e'ls 48 48 0
e'l6 50 48 2
Total 452 444 18 848 | 45 200 72 1400 90




5"8 + 9!8:”1') .3‘8’

we determined 3[8 by passing to it the terms of §i8 that do not

depend on ¢'.

The constructions we just outlined have been implemented automatically,
using MAO as algebraic prucessor. The development of 3% in power of e
had been truncated after degree 16, for no other reason than to set a
limit. At each order of the elimination, two degrees in e are lost
through the differentiation with respect to G' involved in the Poisson
brackets. This way we know :ué up to el®, but J{g up to el g
:Rg up to el!? and Sﬂ; up to ell onlv, By listing the number of terms
in the various components calculated so far, Table III purports to suggest
the size of the programming chores and how fast the elimination gains in

complexity as the order increases.

4. The Elements of the Short Period Elimination

The generators wl, W), W, determine a completely canonical trans-
formation from the osculating elements u = (2,g,h,L,G,H) to a new set

of variables u' (¢',g',h',L',G',H'), the equations being of the form

1 o2 1,33

a I
u u +J2uo(u)+ 6

Since the coordinate h' 1is ignorable in the generators,
H=H'

On the other hand the partial derivatives of the generators with respect
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to L' and G' do not have the d'Aiembert characteristic in reference

to the pair (e'?'); as a matter of fact, they will contain negative powers
of e', which is a reflection of the fact that, for circular orbits,

the direction of the perigee is undetermined. But such divisors do not

appear in the developments that express the mean distance to the ascending

node
F=¢+g
and the state functions
C=c¢e cos g, S=e sin g

in terms of the new variables (i',g',h',L',G',H'). Therefore we propose
to calcu'.ite the ephemeris of the satellite by means of the following
elements: F, h, C, S, L and H, For all of the. except the last cne, ve
have obtained their expansions in powers of J , the coefficients coming

in power series of e',

We review here the tormal characteristics of these series; the sta-
tistics of Table VI make it plain that we cannot think of reproducing
them in print. For the sake of brevity, we have put

n' = H'/L', n' o= a'/Re.

Also the upper limits mentioned in the signs of summation are merely
anecdotic; these are the degrees of the eccentricitv e' after which ve

have truncated the expansions.

a) The mean distance F to the ascending node




b) The longitude h of the ascending node

N —_— :m
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= Rt 1 =25 1 0 v=boy o1 13 4=6n
F=F'+Ja" "F + 332" F +¢ 13 ),
F' = S‘ erj F' +F! 12
P PR R B R
F,' = e'j F' . +Fl r|2+F' 1y
2 OiJSlz [ 2’.]’0 2!j!2] 2).1’“” ]’
F' = e'j F! +F! ,"2+F' m.H;w n'6 .
P 05570 SETE LI I UL I IL L I
! ! ) -t 1 i f i
The coefficients Fl,j,o’ Fl,j,z’ , F3.j,6 are finite sums of sine
functions in the arguments pf' + 2qF' such that in F; BT we have
2J
the conditions 0 Sq = r, |p] <3 and p = j (mod. 2).

= h!' ' 1T 2 1 o =ty 1 .3 476,
h=h'+n W, h1 + > J2a h2 + 5 J2a h3),
h! = e'In’
S TR R
W' = e'j h' +h' 12
2 0<§314 ( 2,350 2,3 ,2" )
h} = ZE e'j(ha +h! n'o+h! n'*).
053512 »J»0 3,3,° 33,4
The coefficients h' ,h' . , ..., h' are finite sums of sine
13350 23150 3,51
functions in the arguments pf' + 2qF' such that in h; 3,k we have
*J
0 qzsr, :p: = j and p - j (mod. 2),
c) The scalar C = e cos g
SN =2 d oo a=hor g1 13 4=
C C +J:a C] +2J20. C2+6J? C3,
C.l % Z elj(C| +C'1 on'?)’
05§14 1,§,0 1»3,2
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C = Z e'j(c; +C! n'2+C R I8

L]
g 053312 3,072,352 2,5 u

C! = z e'j(C'j’

0+C| n|2+c| n"-’+c' ) nl()).
053210

3, 3,352 3,354 55J46

» s € ~ are finite sums of cosine

C :
353,60

1 1
The coefficients Cl.j.o’ 1,12

functions in the arguments pR' + (2q+1)F' such that, in

1

c . we
r,j,k

have 0 5q 2 r, |pl £3,p =3 (mod. 2).

d) The scalar S = e sin g

= Q' =21 l 2 1=l l 3 =0

) S +J2c1 Sl+2J2a Sz+6J?u SG’

S' = z e'j(s' . +S! n'Z)’
0<3<14 19350 15392

S!' = z evj g! +S! 124g! 'l
0<j<12 ¢ 25350 2vj92n ?oj:“” )s

Sl - z elj S' +S| o '2+Sl lL0+Sl L 16 .
0<j<10 ( 3,_‘],0 3’j"‘n 3)jsl*n 3,J )“n )

Th fici s! s' veeoy S! ini s of si

e coefficients 1,350° S1,3,2° 5 Spg are finite sums of sine

functions in the arguments pi' + (2q+1)F' such that, in S; i,k we
3 b

have 0<q<r, |pl £ 3,p 3 (mod. 2).

e) The action L

- [] 17210 _1_ 2 vhoy __1_ 3 16
L L (1+J2a Ll + 2 Jza L2 + 6 J?“ L}),
Ll = z e'j(Ll +L| n'2)9
1 0<3316 1,3,0 1,3,2
L = Z e'dr . 4Lt ontLl L et
0<7214 245072352 2y3au
L' - z 'j L' +L| '2+L' . VL¢+L| . 16 .
3 N (39j:0 3vj’?n ?‘L]:l’n ?’Jo(’n )

0sj=12
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L t ]
The coefficients Ll,j,o’ Ll,j,z’ oo o L3,j,6 are finite sums of cosine

functions in the arguments p&' + 2qF' such that, in L; yk Ve have
'J

0<qsr, |p|l 23 and p =j (mod. 2).

Given the values of F', h', C¢', S', L' and H' at an instant t,
the preceding series enable us to evaluate the corresponding functions

F, h, C, S, L and H at that instant of time. Indeed the decomposition

pi' + 2qF' = (2q+p)F' - pg'

implies that in all the coefficients, the elements e' and g' enter

only through polynomials in €' and S'. For instance, a term like

e'5cos(31'+4F')  can be evaluated as follows:
e'Scos(35"+4F") = e''[(e' cos 3g')cos 7F'+(e'3sin 3g')sin 7F"!

wherein

e!2 =C'2 +S!:"
e'3cos 3p' = 4C'3 - 3C',

e'lsin 3g' = S'(4C'’-1).

Thus nowhere is it needed to cvaluate separately the eccentricity e'

and the argument of perigee g'. In sum, as far as the short period
perturbations are concerned, the above series overcome entirely the indeter-
mination in the direction of the peri.ee which is inherent to circular and

almost circular orbits.




Table VI.

3=

to evaluate the short period perturbations

Recapitulation of the series necessary and sufficient

Bt gl

a' e' LF! Ah' Lct LS L
1 0 2 1 4 4 2
1 6 3 6 6 6

i) 6 3 12 12 6

3 12 6 12 12 12

4 12 6 20 20 12

5 18 9 20 20 18

6 18 9 28 28 18

7 24 12 28 28 24

8 24 12 36 36 24

9 30 15 36 36 30
10 30 15 44 44 30
11 36 18 &4 44 36
12 36 18 52 P 36
13 2 21 52 b il
14 42 21 60 60 Y
15 24 48
16 . 24 L 48
338 217 454 454 434

2 0 6 4 9 9 9
1 15 10 18 18 15

2 28] 13 27 27 24

3 30 19 36 36 30

4 36 21 45 45 39

5 45 30 51 51 45

6 51 31 63 63 54

7 60 40 69 6Y A0

8 606 41 81 81 Y

9 75 50 87 87 75
10 81 51 99 99 5.0
11 90 60 105 105 O()
12 96 61 117 117 nY
13 70 105
14 L 71 L L 114
672 572 807 807 AR

3 0 12 O 16 16 16
1 28 21 3. RN 28

2 40 30 48 48 50

3 56 42 64 64 56

4 68 51 80 80) o

5 84 63 96 96 S

6 96 e 112 112 100

7 112 813 128 128 1?2

8 124 92 142 142 128

9 140 104 160 160 150
10 152 114 175 175 156
11 125 fos
12 135 ) 184
9]2 941 1053 1053 1288

Total 1922 1730 2314 2314 M3
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5. Initialization of the Elements F', h', c', S', L'

After the short period terms have been eliminated, the Hamiltonian

becomes the function J

gf' Z.?f'(-.g',h',L',G"H')
=3[6+J?3£;+%J§9Q+i.133{'+— ;7‘1. (9)

with
1 p2
-?L|2)

m{; 3‘:}(-:-,-’1-"’-;')
V' (- = 1" ! (A 73

3‘] 3{1( »=s=sL G HY) :no»

It =3 (-.g'-,L"C 1Y) -3, 2 Sk < 4.

¢

Now that ' 1is ignorable in the transformed variable, the action L'

turns out to be an integral.

On one hand, through the elinination of short period terms, the solu-

tion of the Main Problem reduces to integrating the Hamiltonian equations
generated by (9) and composing their solutions with the equations of the
canonical normalization. On the other hand, the initial conditions determine
the Initial values of the elements ¥, h, C, S, L and H, but not of the
transformed elements. Therefore, to insure that the solution in

(+',g' h',L',G'",H') corresponds through the transformation to the initial
elements (F), o€ 0,.0,10,H), we must provide the way of determining the
initial values of the transformed elements (Ff,hh,C S\,]' H) . In a
Calculus of Perturbations based on lLie transforms, the initialization of

the transformed variables is accomplished by constructing explicitly the

inverse mapping, or rather the generators (Vl,Vs,V:) of the inverse
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mapping. As it was established elsewhere (Deprit 1969), at least up

to the third order, they result from these straightforward operations:

V K Vl(ﬂ,g,-.L,G,H) —N](Q,g,-,L,G,H),

V, =V (8,8,=,L,G,H) = =W (%,8,~,L,G,H),

V 55 VB(Q,g,-,L,G,H) W, - (w?;wl).

W
i

As we did in the case of the direct transformation, we by-passed

the explicit construction of the inverse transformation itself, for the
equations expressing 2' and g' in terms of <, g, h, L, G, H will
involve negative powers of e. Instead we addressed ourselves directly

to the task of expressing the elements F', h', C', S', L' in terms of

Fs hy €5 S,; L These expansions have the same form as the ones described
in the previous section for the direct transformation. Inserting in these
series the initial values FO, ho, CU’ SO, Ly and the value for the

integral H would then provide the initial values F], hé, Cps Sy and the

value of the integral L'.

6. Elimination of the Long Period Terms

Following the main steps of Satellite Theory as outlined bv Brouwer,
we now consider constructing a completely canonical transformation from
the variables (1',g',h',L',G',H') 1into the variables (:",g",h",1",¢" 0")

1t

to the effect of rendering the angle g" ignorable in the transformed

Hamiltonian.

The construction is again based on determining the transformation

generators ¢], ¢ 4y .y, and so on. Thus entering a triangle similar to
S

“

the one displayed at the beginning of Section 3, we put
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mg(ill’gll’_’Lll,G"’Hl') =$l'((2,"’g"’-’L"’G"’H").
Order 1. The differential identity
0 . = ¢!
3+ Of):) =3
is satisfied byv putting

9t =96

0

and by reguesting that

or that :1 do not depend on 1

According to what we observed in Section 3,

1 1(e - o " ] "
gfo Sf() | B Y } aG ’H )

- UL,R;LH'G i Q"?j m}

1 H" 1y o
Al R R

Consequent ly

—?fl = 2,0 em N (1+l)e"2j[‘][1 1 (H"/L'"™) )
NE e j:_-',) : o,_1+1.0'm0 s HL '
= 2R (1me") Y e gyl ot (H"/L")7 ]
e j.:() 04J4150 7 0,1+1, '

1
The program has been set up to expand (l-e')*, to multiply this binomial

",

development with the explicitlv written power series in e, and to

bring WSQ/‘C" in a power series of the form




St a1 el e S e Ty

-38-

bl -7

Al + E;A e"j

—— "o "y o bpn?2
aGn D(L )C aH ) 3/4“ ReL j?-l j
where
an
A=1-75 172 °

and, for any j 2 1, the coefficient Aj is a polynomial in A and

H"/L". By introducing & as a symbol in the list of polynomial variables,
it becomes feasible to expand 1/D in power series of e'" and, as a matter
of fact, this artifice makes this inversion quite an elementary operation
for an automatic processor of Poisson series like MAO. The power series

1/D plays an essential rcle at the subsequent orders in the elimination

of the long period term.
Order 2. The elenment
1 & . g
3, =5 + Of;0) + Of50)
reduces to

) =96 + 6130
i1f we assume that
3¢,/38" =0,
i.e., if we select for the second order generator ¢, a fun:tion that

does not depend explicitly on &'". Consequently
2 = ol 1. = o
I =96 + Ofi0)) =36 + 206650

This relation constitutes a differential identity in the unknowns :ng
and e We can satisfy by selecting for 3[5 the average of 5!9 over

the angle g", so that

QR o it Sk v s etvarmn g o> 9 e . e g
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ng ngg(-,-,-,L",G",H") -<3‘g>g”’
by assuming that
8¢1/3h” =0,

so that the identity reduces to the quadrature

11
Ag" =2 pO86) .

The results of these operations are, on one hand for the transformed

Hamiltonian, a second order component of the type

¢

0 ’j ,2(HH/LI|) "9{2

It 0,1

(&3]

- 6pl nw—10 qu 2
uRAL de B¢

320 o L0

»J 0

and, on the other hand for the canonical transformation, a first order

generator of the type

4, = u2R2L" Ysin 2g" 3 a7l S Ny ’k(“"/l‘")?‘k'
jz1 05ksj+1

Order 3. Entering the fourth row of the transformation triangle for
3t', we meet the element

w30+ G50+ 206i) + 00,
Assuming that

aoB/az" =0,

we reduce it to the sum

3 =3 + G6:¢)) +266);¢,).

—~ e o ——— NS O3 @3 2. > e TR -
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) We isolate in it the part yet unknown by putting
3 =96+ 00 )
so that

1 = &7 3
9 312 + 2 1"'”3)'

o<

The partial element 5’[1 is to be computed whereas the Poisson bracket

Cﬂ?;¢q) is set aside until ¢, has been determined.

We treat in the same way the elements

2 =l 1., 1.

I = .
3, 9 + 0%.4\1).
By putting
% = ¥ 1.
3‘1 3‘2 + 0‘]9“1)’
~3 -~L .
‘ 3, =H] + Gpo,sl),
so that

3{% '5‘2 + 30‘?;\:“)t

1
g =5 +306;1),

we isolate in them the parts that we are able to compute and isolate the

Poisson bracket. In fact, the relation
5[03 +3069;0,) =K

constitutes a differential identity to be satisfied by the unknowns




3[3 and %,.

As we have done repeatedly, we propose to take for Sg the average

of ‘~3 over g'", and while we assume that
3¢, /on" =0,

we obtain :2 from the quadrature
8\’92

2 1l o5
g" 3 Dmo'g[o) )

These operations produce, on one hand for the averaged Hamiltonian, the

third order component which is a series of the form

3‘3 - LSRgL"-I“ S A-jel'zj N 3‘3 (H"/L")ZR,

: 320 0skZy+3 0230k

and, on the other hand for the canonical transformation, the second order

generator

l‘RL’L"-'?.\_- C\-j-lcnzj N\ (H"/L")Zk,

321 0sk<{+3

.
S, ® U
=

2,3k

the coefficients & 3,k being finite sums of sine functions in the argu-
P ?

ments 2pg with 1 < p £ Min(j,2).

Order 4. Before computing the fourti order row in the triangle, we

complete the elements of the third order:

~ 2 o :
]l = gl - Z(9f3
o' =30 - 3609

2 =92 - @398
3 = - G38L).
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Then in the element
1 . . . .
3, =30 + O£ + 3060:6,) + 36H:0,) + 6636,
we assume that
39,/92" =0,
we isolate the terms that we can already compute at this stage, namely
a7l = H0 . ;
Si =9 + Of30)) + 306:0))
so that
9ty =5 + 30(50.).

Similarly in the element
2 = 1 1. 2 1-' + S
9, =9+ Ot 0,) + 204 3¢,) ('no,,})
we group the terms that we are already able to evaluate:
%2 = 9 1. b
3}, 313 + 0!2,¢1) + 2(‘7(1.@2)
and this way we come to the relation
2 ’~1 .
32 =3, + 40;0,).
Proceeding likewise for the element
3 = g2 . 2 o
I =9 + OF30) + OLis),

we put



~43=

%3 =92 . 2 .
3 =9 + Of:¢)) + 6£50,)
and arrive at the decomposition
3 = gf3 ol
3 =9 + 4060,

Finally, byv introducing

~

b = af 3.
X, 3!1 + Glo,él).

we are led to the differential identity
Y en ) m gl
Ji; + 40650 =3

Sy
...nce, after transfering into ﬁng the terms of Sﬁ; that do not depend

on g'", we perform the quadrature

3y
3 .11le

to obtain the third order generator of the canonical transformation. This

"o

is a power series in e"< of the form

2k
P 23 6 pb "‘11 \ .'j-z ||2j T 2 (H"/L")
Ry = L R L _L» e e y3 k
R E3 0ckSyes 3o
whose coefficients || ik are finite sums of sine functions in the argu-
A

ments 2pg" with 1 Z p = Min(j,3).

We enlist in Table VII the number of terms contained in the result
series chtained se far. This summarv indicates how the elimination of
short period terms has simplified to a very large extent the further
reduction of the Main Problem. But the reduction has been bought at the

expense of more sophisticated manipulations in the construction of the
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now completely normalized Hamiltonian.

Table VII. Recapitulation of the Hamiltonian averaged
over the long period angle and of the generators

of the averaging transformation

3, &y I; S ; i 5, 1

e'l 2 0 3 0 4 0 5
e"? 2 3 3 5 5 7 7
et 2 4 3 12 6 16 8
e"t 2 5 3 14 ' 7 27 9
e"f ) 6 3 16 8 30 10
el 4 7 3 18 9 33 11
e"l2 ) 8 3 20 10
el 2 9 3
e"lé 2

Total 18 42 24 85 49 113 50

7. The Elements of the Long Period Elimination and Their

Initialization

The generators of the transformation from (',g',h',L',¢',H")

to (",g",h",L",G",H") do not depend on the angles
hence the transformation does not change the actions L'

thus

L' = L" and H' = H",

In order to avoid the presence of divisoreg in e",

mine the transformation through its equations expressing

and h';

and H4':

we do not deter-

~ 1 L]

s ?'| h
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and G' in terms of the new variables, but rather by means of the
elements F' =2' + g', h', C' = e'cos g' and S' = e'sin g'. The
algorithm by which these state variables are expressed in terms of the new
variables with the help of the generators Ql, ¢2, ¢3 has been described
elsewhere (Deprit 1969). Here it suffices to say to record the morphology

of the resulting series. For the sake of brevity, we have put
r]ll = H"/L"’ Q" = a"/Re.

a) The mean distance F' to the ascending node

F' = F" + Jzau'sz]u +%‘J§C¢"-“Fg +%‘J§O¢"-6Fg,
T T e
1:5<6 0skSj+2 I
Fy= 3 72 5 kn"zk.
> 1<§ss 0<k<j+4 2230
F'3' = -\: ensz-j"3 S Fual knnzk.
15 <4 0sk<j+6 3
The coefficients F: 14k are sums of sine functions in the arguments
2 J

2pg" with 1 £ p £ Min(r,j).

b) The longitude h' of the ascending node

h' = h" + n"(Jza"-zh'l"F % Jgu""’h'2'+ % J%a"-()h'a') ,
hn i N enzj .\‘j‘l \ " r]nzk
1 — = L s 1. ’
1527 0K+l 1ok
h" = A e"‘?jA-j_2 S h' nnzk
2 ry 24] sk ;
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hf} = ) e"?3,733 > hY kn"?'k.
05355 0<ksj+5 ~*3°
The coefficients h:‘j g are sums of sine functions in the arguments
2 J

2pg" with 1 2 p < Min(r,j).

c¢) The scalar C' = e'cos g'

-2 - -
C' = C" + e"(,a" T C+ 3 33T el § 1300y,
C" = N e"2jA-j-l N c" nzk’
' oos3%e 0skSy+2 1+d0k
cg= 3 ey Y e kn"?k,
0:3<5 0sk<j+s 2030

c" = S ensz'j-3 “ c" nuzk

053%4 ozkSj+s Ik

The coefficients C; are sums of cosine functions in the arguments

»Jok
(2p+1)g" with 1 2 p 2 Min(r,j).

d) The scalar S' = e'sin g'

- - 1 &
§' = §" + e"(J,0"78" + 5 32" sy + & I3a"TOSY),
s"e 3 "Myt T v "2k,
bo0sTs6 0skSj+2 oK
N ,,2_*] 'j"2 " "2k
si= Y e"a Y ST
05355 05k<j+4
"2 ‘j"3 " u2k
S'3' = E e A E S3,j,kn 2
0354 0kZj+6
The coefficients S are sums of sine functions in the arguments

r,j,k
(2p+1)g" with 1 £ p £ Min(r,j).

The inverse transformation, i.e., the mapping from (2",g",h",L",G",H")



Table VIII.

Summary of the long period corrections
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to F', h', e'cos g' and e'sin g'
n-2 " " " "
Jd.¢ e LFW Ah LC AS
1 0 0 0 3 3
2 4 3 8 8
4 5 4 10 10
6 6 5 12 12
8 7 6 14 14
10 8 7 16 16
12 9 8 18 18
14 . 9 ___ .
39 42 81 81
2% 0 0 0 5 5
2 6 5 12 12
4 14 12 ] 21
6 16 14 24 24

8 18 16 27 27
10 20 18 30 30

12 20
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to (',g',h",L',G',H') 1is generated from functions Uis Ups Vgs sees
which are easily derived from the generators ¢1, by ®3, .o oOf the

direct transformation:

U‘l(‘:g"')L'nG',H') = -¢l(-,g',-.L',G',H').
wz(-,g',-,L',G'.H') - -(bz(—,g',-,L'.G' :H')9

W3("g"'nL' ,G',H') = ":‘3 - (‘1’2;@1).

These generators will be used to express the state variables F", h", C",
$" in terms of F', h', C', S', L' and H'. 1In particular, if we give

to the elements the initial values Fé, hg, Cys Sg» L' that we computed

in Section 5, we obtain from the series the corresponding initial values
Fy, hp, Cg and Sg of the elements resulting from the elimination of

the long period terms.

8. The Secular Terms

After elimination of the long period terms, the Hamiltonian of the

Main Problem is the series
wﬂ -wl(_’_'_,L"’GH’HH)
= ag'! . g V
I+ I+ 7 IP + g IPh
with

s
Lll2 ’

(SIS

B Z (= L gy = -
3 = 9¢)(=,==,L",6",H") =38,
3‘: 53‘:2'(":""14"’6"‘“") 28‘6'

The canonical equations it generates have a trivial solution. Since the
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angle coordinates are all ignorable, the actions L", G"

constants of the motion. Therefore, the frequencies

L t L}
Vv '%, Vv 'ﬁt.—. v 'l"
1 oL 2 3G 3 oH

are also constants. Let us review their morphology:

a) Anomalistic mean motion v

1

= n" n=2 _!-_ 2 n=b _1_ 3 w=6
v, =n (1+J2a v, +35 Jsa" v +g I

1gi 1,2 Vl.a)’

v = E e"zj (v +v

n"2) .
Ll g<3<7 Ladudsl " bolsdsZ

"2

v = e2d(y n"*),

05326

w5 w2j,=j-1 S w2k
¥143 R Sl Yl
05355 0skSj+4

+v ; +v
1,2,3,0 1’23.]'2“ 1,2,3,4

b) Mean motion of the perigee v

2

- w n=2 1 "n=2 1l o =2
v, = J,n"a (v2’1+ 2 Jya" v, t g JZa” v

= N "2j ; "2
b R (vz’l’j’0+\2;1’j92q )s

2 [
nl' +\) n" )'

2’23j’0 2,2lj,2 2’29.1’“

- l ensz‘j'l S v. . r]nzk
0s3<5 OskZj+4 203030k

c¢) Mean motion of the ascending node v

3

<
n
1|
el
Q-
r,
D
+
|
(&

-2
J "nmn " +
3 2n - h (v3,1

- ~ 4
"o

v \YJ e
053'58 351,] ’

” }: ellzj(\) ’)nu?_)’
02557

+v :
3,2,3,42

3525350

and

H"

are



ey

=50~

2k

\ n.\j A-j—l \ "
e - D358 ol

% —

* o 0s3-6 0:k<j+3

Instead of integrating the differential equations in " and g",
which raises for the initial conditions 23 and gg the problem of

divisions by the small eccentricities e, and ea, we determine the

elements F", C", S$". Thus the integration of the secular part of the

Main Prob lem results in the following formulas:

11 0 H " = a0 - "
F 4 og (v1+\:)(t to) + FO’

" = e'"cos g" Cgcos vg(t-to) - Spsin Vz(t—to)’

SH

" " ”n " Y
e''sin g S, cos v?(t-to) + C0s1n vz(t to),

h"

V1(t-t0) + hg.

9. Computation of the Coordinates and Velocities

After the series for the direct uand inverse transformations eliminating
all periodic terms have been obtained, we are in a position to compute at
any instant--within the time interval of validitv of the theory--the position
and the velocity of the satellite from coordinates and velocity components

at an epoch tn'

Given (x.,v,,2,,% ,¥ ,2,), the initial values of the elements F,,

hay €3, §-, Ly, H are determined from the following system of formulas:

The components of the angular morentum being

Ay = y\\éw = Zﬂ_\." ’

we compute its norm at t

e e T e e s e .~ T e o
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Gy = VA2 + B3 + K,

so that the trigonometric relations

AO = G0 sin 10 sin hO,

BO = -Go sin IO cos ho,

H= GO cos I0

determine unambiguously the initial longitude h, of the ascending node
and the initial inclination. Next we rotate the coordinate axes so that
0r and On lie in the orbital plane H(to) with 0f coinciding with the

ascending node at the initial instant t In this frame of reference,

00
the initial coordinates and velocities of the satellite are

£y ™ X, cos hO + Yo sin ho,

= (-xosin h,+y,cos h;) cos IO + 2 sin IO,

= X

$ o cos hO + v, sin ho,

=
]

(-%,sin ho+ygcos hg)cos Iy + 2z, sin I.

Evidently the initial planetocentric distance is

e ——

~ =)
o =
L V‘m + .

Moreover, from Laplace-Hamilton's vector oriented along the apsidal

line, we obtain that

. o . =il
CO = Ca”o - rotn

S, = -GU{G = NeTp

which relations determine the square of the eccentricity

S = 0 o+ .".
ey p S0

Having evaluated the quantity
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en en -1
ZEO = (¢ +n0) - ZrO .

we are now in a position to calculate the initial semi-major axis
aie -1/250,

hence Delaunay's action at time tos namely

There remains to compute FO. Recalling that

50 So
o " 08 Y, = C) +———— (Cosin Yo=Sycos wo),

O 1+ Vi1-el

Ny C0
— =sin y, = §, = ————— (C.sin y.-S cos )
0 0 ’
a I (B ‘/l-eg f ¢ 0

where vy = EO + - (E0 being the eccentric anomaly at time to), we

deduce that

Cosin Yy = Socos ¢O p Con0 - Sogo

1+ v l-eg a, V. l-eg :

so that the preceding formulas yield

€ SO(COno-Sogo) 1 -V l-eg
| ik oot
cos y, = Coe0 + +

ao aO l_eg
Ny ColCono=Spgy) 1 - / 1-e2
sin y, = Sef + — - .

3o a, v l-eg
They determine unambiguously Yo * Finally an obvious modification of

Kepler's equation produces

FO = Yy = C0 sin ¥ + SO cos Y.

The initial values FO, ho' CO, SO, LO, H are entered into the
series expressing the averaged elements F', h', C', S', L' in terms of

the osculating elements F, h, C, S, L and H; the substitution produces
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the initial values Fg, hS’ Cé, Sé and the value of the integral L'.

They are then introduced in the series expressing F", h", C" and S"

in terms of F', h', C', S', L' and H, which results in the determination

~1t

of the initial values Fg, hy, ¢y, and Sg.

At this stage we are in a position to evaluate from the series the
nume rical vialues of the three basic mean motions Vis V2 and Vg This

is thu last step in the initialization phase of the ephemeris.

The calculation of the position and velocity at any instant t follows

the same line as the initialization, but in the reverse order.

First we evaluate the state variables F", h'", C" and S" at time
t from the simple formulas given at the end of Section 8. Then tihe series
described in Section 7 provide the average state variables F', h', C',
S', L' at time t, whereas the series of Section 4 furnish the osculating

clements F, h, C, S, L at that instant.

After the process of evaluating the series numerically is completed,
we determine the coordinates and components of the velocity from the

following system of formulas:

Kepler's equation in the form

,=F+ Csin . -8 cos 4

is solved by iteration to obtain the anomaly | = E + g. The eccentricity

and the semi-major axis are computed from the relations
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The position in the nodal frame of reference is given by

S
1+ V1-e?
C
14+ Vi1-e?

£ = a[cos v - C+ (C sin Y-S cos w)] ’

n= a[siu v -8 - (C sin y~S cos w)] :
Knowing

we can use Hamilton's vector to get the components of the velocity in the

nodal frame,
<-4 (s+3)

%)

Thereafter, havinp produced the inclination from the relations

Raa IR

Se
[ ]
(2] [

cos I = H/G, 0<Ics<m,

we perform the usual rotations to pass from the nodal frame to the original

inertial frame, and we come finally to the Cartesian coordinates

x = f£ cos h=-n cos1sinh,
y=¢sinh+n cos I cosh,

S

z=nnsinl,
and the components of the velocity

i-écosh-ﬁcoslsinh,
)"":ZSinh'*ﬁcosIcosh,

7z - nsin1

b
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10. Reliability Tests

While the coding was in development, repeated checks were applied to
test its correctness. The series generated by the program were constantly
checked for their physical dimensions and their d'Alembert characteristic.
Subroutines that, in the parlance of the trade, are called expert, like
taking partial derivatives with respect to Delaunay's actions G and L
or computing a Poisson bracket, have been thoroughly tested. For instance,
in regard to the canonical transformation (2,g,h,L,G,H) - (2',g',h',L',G',H"),
we satisfied ourselves that the Poisson bracket (2:g) 1s indeed equal
to zero, i.e., that the coefficients in the result are smaller than 10-12
in relative accuracy. (N.B. They should have come exactly equal to zero
had we operated in integer arithmetic.) The general course of a reduction
by Lie transforms has been implemented on a number of simple examples like
the simple pendulum, Duffing's equation and the relativistic harmonic

oscillator.

The ultimate test of reliability is a comparison of the positions
and velocities predicted by the series with those of a highly accurate

numerical integration scheme,

We chose to integrate the equations of the Main Problem by recurrent
power series. All Taylor expansions involved are computed at each step
through degree 16; the time step is selected so as to maintain 12 significant
figures in both the integral of energy and the integral of polar angular
momentum. The procedure is rapid, highly accurate, and stable; it enables

one to follow for very long arcs the orbit corresponding to a given set of
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initial conditions (Deprit and Zahar 1966).

In order to allow comparisons with other prediction methods, we
borrowed from Bonavito et al (1968) the initial Cartesian coordinates
and velocities they assign for the artificial satellites RELAY II and
ANNA 1B, Table IX lists the initial conditions, the osculating elements
at epoch, the corrections to be applied in order to obtain from them the

constants of the motion as per our theory, and the basic periods.

We examined the residuals (integration-series) for the elliptic ele-
ments selected in our theory. Disagreements on the inclination I and
in the longitude of the node h are simply insignificant. As expected,
the mean distance F to the node shows a secular deviation (see Fig. 1).
For ANNA 1B, the residuals in the semi-major axis suggest a long period
error coupled with a secular trend; for RELAY II, the presence of a long
period error is well marked in the element C. For all other variables
presented in Figure 1, the effects of short period errors caused by
the truncatures in the eccentricity and J2 seem to mask long period and

secular tendencies.

More revealing quantities to evaluate long range reliability are
s s
the intrinstc deviations., If Xps Yo 2g (resp. Xg» Ygo zs) are the
coordinates at time t furnished by the numerical integration (resp.
the literal series), and if XI, YI, ZI (resp. Xs, YS’ ZS) are the compo-
nents of the velocities, the directions of the tangent, binormal and

nornal to the orbit at time ¢t are given by the triplets




ANNA 1B

Initial osculating elements

F,(in radians) 2.538 875 214 278

ho(in radians) 0.949 636 751 294

S, -0.002 107 639 831

Co -0.006 371 881 838

Lo(in Vanguard units) 1.085 131 662 111

H (in Vanguard units) 0.695 348 576 283
Short period corrections

Fy - Fy 0.273 044 549 x 10~

hj - hy 0.342 375 395 x 10~

Sy =S, -0.369 163 708 x 10

Cy = C, 0.015 809 392 x 10~

L' - L, -0.128 216 782 x 10
Long period corrections

Fy - F) 0.005 752 x 10™°

hY - n! 0.012 755 x 10~°

sy - s} -0.561 488 x 10°°

cy - c} 1.410 317 x 107°
Periods

2n /v, 1"47™10%2139

2n/v, 121%5"38™15%35

Table IX. Constants of the motion for the
test orbits

2n/|v,| 99917"34™55%60

] ]
w W w w w

RELAY 11

3.273 083 992

-2.384
<0.025
-0.234
1.322
0.884

-0.052
-0.006
0.123
0.563
=0.452

0.846
2.070
-2.404
21.619

959
229
623
050
318

347
726
600
272
874

017
715
673
075

105
668
580
356
864

711
021
234
260
015

x 107
107
100
10

x

x

x

516
384
345
641
567
870

x 10~
x 10~

X

10
10

x

6
6
6
6

3P15M005%4528

331%3"50™545%43

h

3329220125781
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Fig. 1.

Errors on osculating elliptic elements
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t, = (xI/vI,YI/vI,zI/vI)

~1
where
o (x24v2472)%
VI (XI+YI+ZI) ’
where
Ay = yiZp = i
By = 21X = x;Zps
Cr = *¥1 - ¥i¥p
o (a24R2e02) %
G, (AI+BI+CI) R
and

By = (B2p-CY YoV, (€ X mAZ ) /6 VL (ALY -BrXy) 6yVy)-
Then the dot products

) b

(xg) * by %) C R (%) Yy

constitute the projections of the error in position respectively on the
tangent ("in-track error"), the normal ("along-track error") and the
binormal ("across-track error") of the orbit at time t., It is a
characteristic feature of a perturbation theory that, while it yields a
very close approximation of the orbit even over very long range, it
leaves in error the basic clocks of the motion, namely the frequencies

However small the level of errors on these clocks, they

Vis Vo Ve

cumulate linearly with time. The predicted orbit coincides nicely with
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the real trajectory of its initial conditions, but the satellite takes a
more and more pronounced habit of arriving too early or too late at the
expected meeting places. This story can be read in the diagrams of position
errors (Figure 2). The deviations along and across the track are totally
insignificant, but the errors in track show a secular trend. (Note that

for both satellites, the tests cover more than one revolution of the peri-
gee.) Comparison with similar tests by Arsenault et al (1963), Lubowe
(1966) and Bonavito et al (1969) should restore confidence in the capa-
bilities of a satellite theory based on Delaunay's elements. For ANNA 1B,
after more than 3000 revolutions, the in-track error reaches only 0.2 meter;

as for RELAY II, after 2800 revolutions, it is still as small as 2 meters.
Conclusions

In Perturbation Theory, Lie transforms will likely supersede Von
Zeipel's method; they provide easy routine schemes for inverting canonical
transformations, for determining the constants of the motion, and for

transposing state variables.

Analytical expansions, however large the number of terms in the series,
are capable of very high accuracy over long intervals of time. As a matter
of fact, a Satellite Theory carried through the fourth order in its secular
terms can deliver the accuracy presently contemplated by i1radar and laser

experiments.

Computers can be programmed to generate developments of average

complexity.

TRt san . - =
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Intrinsic errors in position (integration-series)
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The present theory eradicates the difficulties caused by small

eccentricities. It is evidently incomplete. But it has solved in principle

the problems to be encountered from including more terms of the gravi-

tational field, the luni-solar perturbations and other perturbations derived

from force functions.

Readers interested in having the series produced by the present

algorithm should contact the first author of the paper.
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